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Overview 
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• Start date: 10/1/2013 
• End date: 9/30/2015 
• Project 25% complete 

• Barriers addressed 
– LiB Safety/Abuse 
– LiB Lifetime 
– LiB Efficiency 
– Computer tools for design exploration 

• Total project funding: $2.0M 
– $1.0M (DOE) 
– $1.0M (cost share) 
– Fed. cost through 12/31/13: 

$134.5 k 

Timeline 

Budget 

Barriers 

• Penn State 
Partners 

Funding provided by Dave Howell of the DOE Vehicle Technologies Program .  
The activity is managed by Brian Cunningham of Vehicle Technologies, 

through NETL, Bruce Mixer Technical Monitor 



• Develop an efficient & robust pack-level safety and abuse model 
– Predictive tool with electrochemical-thermal (ECT) coupling 
– Virtual tool to assess/screen safety of cell/pack designs 

• Develop mechanism-based, fundamental models for accurately predicting 
degradation of Li-ion batteries  

– Predictive models valid under user-specified and wide-ranging temperatures and 
operating conditions 

• Perform co-simulation of our software with structural mechanics software via 
the Open Architecture Standard (OAS) 

– Electrochemical-Thermal-Mechanical (ECT-M) coupled simulation 
• Perform testing and validate the cell- and pack-level safety and degradation 

models 
• Expand extensive materials database 

– Experimentally characterizing and adding NCA to our database 
• Develop commercial software to be used by licensees 
• Support DOE CAEBAT activity 

Project Objectives - Relevance 
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Project Milestones & Activities 
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Recent Milestones Completed 
M1: Project kickoff; all agreements and sub-agreements executed 
M2: Completion of initial model development for safety, abuse, and life 

Milestones in Progress 
M3: Complete fabrication of large-format cells for safety, abuse, and  
       degradation testing 
M4: Safety, abuse, and degradation testing 50% complete 
M5: Materials database characterization 50% complete 
M6: Initial model implementation complete for safety, abuse and degradation 
Budget period #1 Exit (12/31/14): Go/No-Go 



Approach – Supporting CAEBAT Activity 
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Experimental Modeling 

End Product: Experimentally validated commercial tool with advanced safety/abuse and life 
models, along with commercially-relevant materials database 
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Approach – Materials Database 

6 Modeling parameters needed at low-T, high-T, wide range of chemical compositions and similar 
conditions of interest for automotive Li-ion batteries and packs 
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Existing Cathode materials: 
• NCM 
• LFP 
• LMO 
• LCO 

Existing Anode Materials: 
• Graphite (blend natural/syn.) 
• LTO 
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Data collected for electrolyte 
concentrations ranging from 4M 
to 0.1M  

Tested temperature range for materials 

Four orders of magnitude 
change in Ds over typical (x,T) 

range for automotive use 

Adding NCA as part of this project 
• GITT for Ds = f(T,x) and OCP = f(T,x) 
• EIS for io = f(T,x,ce) 
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Electrochemical Processes 
- electrochemical reactions 
- solid state diffusion 
- ion transport through 
  electrolyte 
- charge transfer 

Thermal Processes 
 

- conservation of thermal energy 

Heat generation rate 

Temperature-dependent 
physico-chemical properties 
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- potential and current curves 
- temperature history/distribution 
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• Understanding thermal  
phenomena & thermal control 

   has huge impact on  
– Battery safety 
– Cycle life 
– Battery management system 
– Cost 

• Electrochemical-thermal (ECT) coupling 
required for 

– Safety simulations 
– Thermal runaway 
– High power, low-T operation 
– Heating from subzero environment 

Approach – ECT Modeling 
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Accomplishments – Materials Database 
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NCA Property Measurement 
EIS – Exchange Current Density GITT Test – OCP and Ds 

• To get OCP = f(x,T) and Ds = f(x,T) 
• 6-8 months to carry out full matrix of 

(x,T) combinations 
• At one T, 40+ data points to get  

data for entire (0 < SOC < 1) range 
• NCA/Li half cells used 
• Nearly complete 

100 90 80 70 60 50 40 30 20 10 0
1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-9

SOC = (1-disch capa @T/total disch capa @T)*100%
Sample: NCA Cell #1, 1.2M

D Li+
 (c

m
2 /s

ec
)

SOC (%)

 T = 60 oC
 T = 40 oC
 T = 20 oC
 T = 0 oC
 T = -20 oC
 T = -40 oC

So
lid

 D
iff

us
iv

ity
 (D

s)
 

DoD 

Temperature 

• To get OCP = f(x,T) and Ds = f(x,T) 
• 6-8 months to carry out full matrix of 

(x,ce,T) combinations 
• NCA/Li half cells 
• Recently started 

Adding NCA properties to materials database for accurate Li-ion battery prediction under automotive conditions 
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Accomplishments – Pack-level Safety 
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Initial Implementation of Pack-level Shorting Model 

The coupled thermal and electrochemical response of pack-level shorting is captured with  
the model implemented, in an efficient manner 

• We have developed a robust approach and algorithms to efficiently 
simulate nail penetration of multi-cell packs 

• Typical nail penetration simulation takes a few hours for one processor 
per cell (coupled ECT simulation) 

• Goal: develop a software that can reliably asses safety of any cell or pack 
and evaluate effectiveness of various mitigation strategies 

– Nail type, nail size 
– Cell material types, electrode design, capacity, cell/pack geometry 
– Evaluate proposed safety mechanisms under different safety conditions 
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Accomplishments – Pack-level Safety 
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Number and Arrangement of Cells in Pack (1/2) 

Software used to rapidly and cost effectively assess safety of cell and pack design 

• The two cases are identical electronically (same V, same total capacity) 
• Both are shorted by 20mm diameter stainless steel nail 
• The 6p/1s arrangement is substantially safer due to more global heating 

Case #1 
• One 30Ah NMC/graphite cell 
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Accomplishments – Pack-level Safety 

11 Pack safety is dictated by complex interplay between electrochemical, thermal, and geometric factors; safety can 
only be determined by models that account for all three factors 
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Accomplishments – Safety Validation 
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Preliminary Nail Penetration Testing 

Innovative nail/cell design to validate model ECT response of cell /pack during nail penetration process 

• Goal: measurement of detailed electrochemical and thermal 
response during nail penetration test (not just temperature) 

– Current and/or contact resistance 
– Multiple sensors embedded in nail and/or cell to validate ECT model 

• To date: preliminary testing of various designs 
– Will down-select best designs for future use 

• In year two – also perform nail penetration of multi-cell 
pack (pack-level validation) 

Successful in-situ measurement of 
temp & current from past work 



• Enhanced life and abuse models – completed initial model 
development (model equations) 

– Enhanced electrode pulverization model 
– Enhanced SEI growth model, including effects of electrolyte additives 
– Life model for user-defined mixed electrodes 
– Overcharge model 

 
 
 
 
 
 
 
 
 

• Currently working on implementing these refined models 
• All models are mechanism-based, temperature-dependent, 

predictive models, i.e. non-empirical 

Accomplishments – Life & Abuse 

13 Enhanced models for more accurate prediction of life and features to expand  
usefulness (e.g. mixed electrode with life) 

Electrode Pulverization 
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Collaboration w/Other Institutions 
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Project Lead – Software development and sales, 
project administration. 
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• Complete NCA characterization 
• Carry out nail penetration testing and validation 

– Single cell 
– Multi-cell pack 

• Continue implementation and validation of enhanced models for 
life and abuse 
– Accelerated life testing 
– Overcharge testing 

• Add additional features to pack-level safety model 
– Add capability to simulate partial penetration of pack (e.g. 3/16 cells 

shorted) for parallel configuration 

• OAS: co-simulation with structural mechanics software  
(ECT-M simulation) 

• These activities reflected in future milestones 

Future Work 
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• This is the first year for this project (no review from 
last year) 

Response to Previous Year Review 
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• Project on track 
– Demonstrated simulation of pack-level nail penetration 
– NCA characterization ongoing 
– Nail penetration testing with innovative approach to acquire  

data for validation 
– Initial model development complete for enhanced life and abuse models 

• Future work tied to milestones and addresses project objectives 
– Completing ongoing tasks 
– Implementation of models developed 
– Validation of safety and life models 
– OAS 

• Software is commercially available 
• Meeting CAEBAT/DOE goals 

– Helping to accelerate the adoption of automotive Li-ion batteries by 
addressing barriers to adoption (e.g. life and safety) 

– Enabling technology for EV, PHEV 

Summary 

17 




